EXISTENCE AND UNIQUENESS RESULTS FOR VOLTERRA-FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS
نویسندگان
چکیده
منابع مشابه
Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...
متن کاملSome New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations
This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari's inequality. A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.
متن کاملExistence and uniqueness of solutions for fuzzy fractional Volterra-Fredholm integro-differential equations
In this paper we use the fuzzy Caputo derivatives under generalized Hukuhara difference to introduce fuzzy fractional Volterra-Fredholm integro-differential equations and prove the existence and uniqueness of the solutions for this class of fractional equations.
متن کاملSPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...
متن کاملSpline Collocation for Fredholm and Volterra Integro - Differential Equations
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. Numerical results are given t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in the Theory of Nonlinear Analysis and its Application
سال: 2020
ISSN: 2587-2648
DOI: 10.31197/atnaa.703984